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1 Types, Typicality Sets, and Entropy Rate

1.1 Types

Let X be a finite set (called the alphabet). Given a sequence of symbols xn1 := (x1, . . . , xn)
taking values in X n and x ∈ X , let N(x | xn1 ) =

∑n
i=1 1{xi=x} be the number of times x

shows up in xn1 . Notice that (
N(x|xn

1 )
n , x ∈ X ) is a probability distribution on X (which

depends on X ).

Definition 1.1. The distribution Pxn
1

= (
N(x|xn

1 )
n , x ∈ X ) is called the type of xn1 in

information theory and the empirical distribution of xn1 more generally.

A type based on a sample of size n from X has to be of the form (kxn , x ∈X ) for some
integers 0 ≤ kx ≤ n with

∑
x kx = n. Pn denotes the set of all types based on samples of

size n from X .

Proposition 1.1.
|Pn| ≤ (n+ 1)|X |.

So |Pn| grows only polynomially in n. Contrast this with the total number of sequences
of length n, whose size is |X |n, exponential in n.

1.2 The scale of typicality sets

Definition 1.2. For p ∈ Pn, the set T (p) = {xn1 : Pxn
1

= p} ⊆X n is called the typicality
set of type p.

Now note that given any probability distribution (q(x), x ∈ X ) and any sequence
xn1 ∈X n, qn(xn1 ) =

∏n
i=1 q(xi) is determined by Pxn

1
, the type of xn1 , because

qn(xn1 ) =
∏
x∈X

q(x)N(x|xn
1 )

1



=
∏
x∈X

2
nPxn1

(x) log q(x)

= 2
n
∑

x Pxn1
(x) log q(x)

,

which depends on xn1 only through its type. But also note that∑
x

Pxn
1
(x) log q(x) =

∑
x

Pxn
1
(x) log

q(x)

Pxn
1
(x)

+
∑
x

Pxn
1
(x) logPxn

1
(x),

so
qn(xn1 ) = 2

−n(H(Pxn1
)+D(pxn1

||q))
.

This calculation implies the following:

Proposition 1.2. For any p ∈ Pn,

|T (p)| ≤ 2nH(p).

Proof. Take q to be p and consider xn1 having Pxn
1

= p. This tells us that for all xn1 with
type Pxn

1
= p,

pn(xn1 ) = 2−nH(p)

because D(p || p) = 0.
But, given p ∈ Pn,

1 =
∑
xn
1

pn(xn1 )

≥
∑

xn
1 :Pxn1

=p

pn(xn1 )

=
∑

xn
1 :Pxn1

=p

2−nH(p)

= |T (p)|2−nH(p).

We can also prove a lower bound:

Proposition 1.3. For all p ∈ Pn,

|T (p)| ≥ 2nH(p)

(n+ 1)|X |
.

Proof. This comes from showing that for p ∈ Pn, pn(T (p)) ≥ pn(T (p̂)) for all p̂ ∈ Pn. The
left hand side is

pn(T (p)) =
∑

xn
1 :Pxn1

=p

pn(xn1 ) =
∑

xn
1 :Pxn1

=p

2−nH(p) = |T (p)|2−nH(p),

2



while the right hand side is |T (p̂)|2−n(H(p̂)+D(p̂||p)).
Substituting the exact values of |T (p)| and |T (p̂)| using combinatorics, the left hand

side is
(

n
np(a1),...,np(ad)

)
2−nH(p) (with X = {a1, . . . , ad}), while the right hand side is(

n
np̂(a1),...,np̂(ad)

)
2−n(H(p̂)+D(p̂||p)). So

pn(T (p))

pn(T (p̂))
≥ n!

np(a1)! · · ·np(ad)!

2n
∑d

i=1 p(ai) log p(ai)

n!

np̂(a1)! · · ·np̂(ad)!

2n
∑d

i=1 p̂(ai) log p̂(ai)

Now observe that m!
`! ≥ `

m−` for all `,m.

≥
∏n

i=1 p(ai)
np(ai)(np(ai))

np̂(ai)∏n
i=1 p̂(ai)

np̂(ai)(np(ai))np(ai)

= 1.

Finally, we have

1 =
∑
p̂∈Pn

pn(T (p̂))

≤ |Pn|pn(T (p))

≤ (n+ 1)|X |pn(T (p))

= (n+ 1)|X ||T (p)|2−nH(p).

1.3 ε-typical sets in terms of types

For a probability distribution q on X ,

A(n)
ε :=

{
xn1 :

∣∣∣∣∣− 1

n

n∑
i=1

log q(xi)−H(q)

∣∣∣∣∣ < ε

}
.

Proposition 1.4.

A(n)
ε = {xn1 : |D(Pxn

1
|| q) +H(Pxn

1
)−H(q)| < ε}.

Proof.

− 1

n

n∑
i=1

log q(xi) = − 1

n

∑
x

N(x | xn1 ) log q(x)

= −
∑
x

pxn
1
(x) log q(x)

= D(Pxn
1
|| q) +H(Pxn

1
).

So
A(n)

ε = {xn1 : |D(Pxn
1
|| q) +H(Pxn

1
)−H(q)| < ε},

as claimed.
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1.4 Stationary sequences and entropy rate

Beyond iid sequences, we consider stationary random sequences.

Definition 1.3. As sequence of random variables (Xk)∞k=−∞ with Xk ∈ X is called sta-
tionary if

P(X` = x0, X`+1 = x1, . . . , X`+L = xL) = P(X`+m = x0, X`+m+1 = x1, . . . , X`+m+L = xL)

for all `,m ∈ Z, L ≥ 0, and x0, . . . , xL ∈X .

For a stationary sequence,

H(X2 | X1) ≤ H(X2),

but H(X2) = H(X1) by stationarity, so

H(X2 | X1) ≤ H(X1).

Similarly,
H(XL+2 | X1, . . . , XL+1) ≤ H(XL+1 | X1, . . . , XL)

because the left hand side equals H(XL+1 | X0, . . . , XL) by stationarity.
This implies that for a stationary process,

lim
L→∞

H(XL+1 | X1, . . . , XL)

exists and is called the entropy rate of the process. In fact, the chain rule says that this
equals

lim
L→∞

1

L
H(X1, . . . , XL).

Definition 1.4. A stationary process is a stationary Markov chain if

P(XL+1 = xL+1 | X1 = x1, . . . , XL = xL) = P(XL+1 = xL+1 | XL = xL)

for all L ≥ 1 and x1, . . . , xL+1.

So all that matters is the matrix [p(j | i) : 1 ≤ i, j ≤ |X |], where the transition
probabilities p(j | i) = P(X2 = j | X1 = i). If we let π(i) := P(X1 = i) for i ∈ X in a
stationary Markov chain, then ∑

i

π(i)p(j, i) = π(j)

for all j. The entropy rate for a stationary markov chain will be H(X2 | X1) because
H(X2 | X1, X0) = H(X2, X1). So the entropy rate is∑

i

π(i)
∑
j

p(j | i) log
1

p(j | i)
.
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